Solar Mini House

Mini Solar Houses Unit

Grades:
4-6
Description:

In Lesson 1, the lesson focuses on understanding how the angle and orientation affect the amount of energy that is generated through use of a solar cell. Paper azimuth finders, Keva Planks, and multimeters will be used in order for students to draw...

+
-
More Details Less Details
Learning Goal(s):
1. Students will understand how to use an Azimuth finder to determine the direction and altitude that solar modules will face. 2. Students will learn how to describe why a solar module is pitched at a particular angle. 3. Students will understand how to measure the voltage and current for an electrical energy source. 4. Students will learn how to build a circuit that will light a light bulb with a switch and without a switch. 5. Students will understand that the electricity flows through a circuit from an energy source to a load. 6. Students will understand the difference between open and closed circuits. 7. Students will understand the similarities and differences between solar cells and batteries as an energy source. 8. Students will understand how electricity flows through a circuit (from energy sources to loads) with more than one source and more than one load. 9. Students will understand how to build series and parallel circuit and the characteristics of each. 10. Students will learn to power both a light and a fan. 11. Students will learn how to find a fault in a circuit. 12. Students will understand that the electricity flows through a circuit from an energy source to a load. 13. Students will understand the difference between open and closed circuits. 14. Students will identify the causes and solutions to various complications that arise in the construction of circuits. 15. Students will use the design process to create a roof to hold an adequate number of solar modules to power an LED and a fan. 16. Students will understand how to make a geometric net (a 2D drawing that when folded creates a 3D shape) for designing a roof.
Author:
Beverly Satterwhite
Estimated Activity Length:
8 hours
Lead Acid Battery

Solar Battery Charging

Grades:
7-12
Description:

Students will become familiar with circuits, cells, batteries, and photovoltaic cells, then plan, build, test, modify, and re-test a small solar battery charger designed to maintain batteries from a particular device.

+
-
More Details Less Details
Learning Goal(s):
Students will build series, parallel, and parallel series circuits from a schematic diagram. Students will master the basic concept of battery charging. Students will be able to plan and build solar battery chargers for a given battery system. Intermediate students will calculate time to charge a depleted battery to its full capacity given specifications of a solar module. Students will be able to explain how a solar cell works with diagrams and words. Students will use a digital multi-meter to measure voltage, current, resistance, and diode polarity.
Author:
Luke Robbins
Estimated Activity Length:
9 hours
Solar Charger Diagram

Can Portable PV Charge Vehicles?

Grades:
10-12
Lesson Number:
3
Description:

In this lesson, students will begin to explore the potential and challenges related to using photovoltaics to supplement the power needed to charge batteries in BEVs. Students will test a variety of wiring options related to series and parallel wiring....

+
-
More Details Less Details
Learning Goal(s):
Students will explore the role of series and parallel wiring as they pertain to voltage and amperage.Students will explore the processes involved with charging batteries and relate these processes to voltage and amperage.Students will test photovoltaic modules to identify voltage and amperage outputs.Students will calculate, using data from field tests, the maximum power that can be produced using photovoltaics within the constraints of a typical passenger vehicle’s surface area.Students will calculate charging times using various PV array power ratings.
Author:
Clayton Hudiburg
Estimated Activity Length:
2 hours
Solar Charger Diagram

Designing a Solar Charger

Grades:
10-12
Lesson Number:
4
Description:

In this lesson, students will further explore the potential and challenges related to using photovoltaics to supplement the power needed to charge batteries in BEVs. Students will be provided with a 12 V lead-acid battery and several 3 V, 1.5 A solar...

+
-
More Details Less Details
Learning Goal(s):
1. Students will explore the role of series and parallel wiring as they pertain to voltage and amperage. 2. Students will explore the processes involved with charging batteries and relate these processes to voltage and amperage. 3. Students will test photovoltaic modules to identify voltage and amperage outputs. 4. Students will design a system of wiring 3 V, 1.5 A modules together as a means to charge a 12 V lead-acid battery 5. Students will predict and test the effectiveness of their designed solar charger.
Author:
Clayton Hudiburg
Estimated Activity Length:
4 hours
US DOE WInd Turbines

Variables Affecting Wind Turbine Power

Grades:
7-8
Lesson Number:
5
Description:

Now that students are familiar with how mechanical electricity generation works, they will build a wind turbine powered by a box fan. Different teams will test different turbine variables to see how the amount of electrical power is affected. After each...

+
-
More Details Less Details
Learning Goal(s):
• Students will be able to identify and explain at least three variables that affect the efficiency of wind turbines • Students will conduct a scientific investigation to determine which wind turbine configuration will generate the most power
Author:
Craig Marais
Estimated Activity Length:
4 hours
Sunlight Incident Angle

How to Measure Output of Solar Modules

Grades:
4-6
Unit:
Lesson Number:
5
Description:

Students will measure output from solar module before a load is attached and relate it to real world output. They will make these measurements using a multimeter and be able to determine the optimal angle at which their module generates a current flow....

+
-
More Details Less Details
Learning Goal(s):
Students will demonstrate that solar modules create electricity when light strikes the module. Students will determine the optimum angle for the generation of current by a solar cell when given a light source (indoors or outdoors using the sun). Students will be able to effectively use a digital multimeter to measure current and voltage produced by a solar cell.
Pedagogy & Practice:
NGSS Science and Engineering Practices:
Author:
Carol Patrick
Relevant NGSS PE:
Other Subjects Covered:
Estimated Activity Length:
1 hour
Kill-a-Watt Meter

Home Energy Use

Grades:
4-5
Lesson Number:
6
Description:

This lesson is meant to provide students the opportunity to learn about the power usage of items in their home that they are already curious about. Students will learn to use a Watt meter to measure the amount of electricity various electric appliances in...

+
-
More Details Less Details
Learning Goal(s):
Students will make observations and record about the amount of energy used by various appliances in their home. Students will make conclusions about which items in their home are generating the most energy. Students will make conclusions about methods in which they can reduce the energy used in their homes.
Author:
Eric Gronseth
Relevant NGSS PE:
Estimated Activity Length:
40 min
Solar Circuit

Variables Affecting Solar Power

Grades:
7-8
Lesson Number:
6
Description:

Students will plan and condict an investigation into solar photovoltaic technologies to determine what variables affect the output of panels. They will calculate and compare their exploration of solar panels to their previous investigation of wind turbines...

+
-
More Details Less Details
Learning Goal(s):
• Students will be able to identify and explain at least three variables that effect the efficiency of photovoltaic cells • Students will conduct a scientific investigation to determine which photovoltaic cell configuration will generate the most power.
Author:
Craig Marais
Estimated Activity Length:
2 hours