Solar Updraft Towers Lesson 3: Wind Power--A Hands on Experience

Average Rating:
0
Author:
Lisa Morgan
Intended Grade Level(s):
3rd
4th
5th
6th
7th
8th
Subject Area(s) Covered:
wind energy
engineering design
energy transformations
Estimated Activity Length:
2 hours
Learning Goal(s):
  1. Students will understand that wind energy can be converted into other forms of energy.
  2. Students will determine different methods to increase the effectiveness of a wind turbine blade at harnessing and converting the mechanical energy of the wind.

This lesson challenges students to work in teams to design successful turbine blades for the “KidWind Firefly”. The firefly has an LED light that lights up when the students have designed turbine blades that spin effectively. This lesson provides students with hands on experience in designing turbines blades. This will scaffold them nicely into... View full description >>

Solar Updraft Towers Lesson 2: Where Does Energy Go?

Average Rating:
0
Author:
Lisa Morgan
Intended Grade Level(s):
3rd
4th
5th
6th
7th
8th
Subject Area(s) Covered:
Convection currents
properties of matter
Energy Fundamentals
energy transformations
Estimated Activity Length:
5 hours
Learning Goal(s):
  1. Students will understand that hot air rises
  2. Students will understand why hot water and hot air rise and cold air and cold water sink.
  3. Students will learn that wind is produced by warm air rising and cold air sinking.
  4. Students will learn that the energy of moving hot air can be converted into other forms of energy.
  5. Students will understand that energy from the sun can be converted into heat.
  6. Students will discuss the effects of the chimney stack phenomenon.

This lesson consists of six demonstration activities that show examples of ways in which water and air absorb heat to transfer energy from one place to another. These demonstration activities act as unique phenomena in which students can generate questions to lead subsequent investigations with each activity in learning centers.  Through... View full description >>

Solar Updraft Towers Lesson 1: Informative Writing--Where Does Energy Come From?

Average Rating:
0
Author:
Lisa Morgan
Intended Grade Level(s):
3rd
4th
5th
6th
7th
8th
Subject Area(s) Covered:
energy sources
renewable energy
Non-Renewable Energy
Estimated Activity Length:
10 hours
Learning Goal(s):
  1. Students will understand ten renewable and non-renewable energy sources on the earth.
  2. Students will learn the locations of different energy sources on the earth.
  3. Students will learn the history of energy sources and how they have been used by humans.
  4. Students will learn about innovations and inventions used to find, recover, store and release energy for human consumption.

This lesson is a non-fiction research and writing project, which includes a differentiated choice menu and list of ideas for publishing the completed project. Each student will choose one of ten energy sources to research, including coal, natural gas, petroleum, propane, uranium, biomass, wind, geothermal, hydropower and solar. He or she will... View full description >>

Solar Updraft Towers Unit Overview

Average Rating:
0
Author:
Lisa Morgan
Intended Grade Level(s):
3rd
4th
5th
6th
7th
8th
Subject Area(s) Covered:
energy sources
renewable energy
Non-Renewable Energy
Estimated Activity Length:
10 hours
Learning Goal(s):
  1. Students will understand ten renewable and non-renewable energy sources on the earth.
  2. Students will learn the locations of different energy sources on the earth.
  3. Students will learn the history of energy sources and how humans have used them.
  4. Students will learn about innovations and inventions used to find, recover, store, and release energy for human consumption.
  5. Students will understand that hot air rises
  6. Students will understand why hot water and hot air rise and cold air and cold water sink.
  7. Students will learn that wind is produced by warm air rising and cold air sinking.
  8. Students will learn that the energy of moving hot air can be converted into other forms of energy.
  9. Students will understand that energy from the sun can be converted into heat.
  10. Students will discuss the effects of the chimney stack phenomenon.
  11. Students will understand that wind energy can be converted into other forms of energy.
  12. Students will determine different methods to increase the effectiveness of a wind turbine blade by harnessing and converting the mechanical energy of the wind.
  13. Students will determine that thermal energy resulting from the sun’s radiation can create an updraft that will power a turbine to spin.                                       
  14. Students will identify characteristics of turbine design that improve the success of their device.
  15. Students will utilize content from previous phenomena they investigated, such as the chimney stack effect and Norwegian candle toys, to determine how to best harness the energy transformed by their device from the sun.
  16. Students will be able to define and explain what a solar updraft tower is.
  17. Students will make connections between their previous engineering challenge and a real world solution to the world’s growing energy demands.

Students will combine research, direct observations, and hands-on investigation to lead them into an engineering design project involving the construction of a solar updraft tower.  During this process, students will make references to specific phenomena they witnessed in the classroom involving convection currents, solar energy, energy... View full description >>

Oregon Coast STEM Hub

Location:
Newport, OR
Grade Level:
PK
K
1st
2nd
3rd
4th
5th
6th
7th
8th
9th

On October 10, 2016 the Oregon Coastal STEM Hub hosted the 2016 Coastal Learning Symposium at Newport Middle School with a goal to make meaningful connections to the Oregon Coast for PK- 12 educators and students. The Solar 4R Schools program offered a Renewable Energy Inquiry and Engineering workshop to area teachers. There were a total of 22 attendees from 3 different school districts present. Participants at the workshop engaged with a variety of activities; including the construction of a Copenhagen solar oven, exploring electric circuits, and crafting solar boats. Every teacher... Read full project narrative >>

Seattle Puget Sound

Location:
Everett, WA
Grade Level:
K
1st
2nd
3rd
4th
5th
6th
7th
8th
9th

In 2015, 18 educators from 8 different school districts convened for a “Solar Energy and Opportunities for Inquiry in My Classroom” workshop. The workshop was held at Everett Public School District Community Center. Teachers worked together on activities that included making a Copenhagen solar oven, building simple circuits, and putting together solar cars. Along with the renewable energy workshop, teachers received custom science kits and access to the online educator library to implement in their classrooms.  Read full project narrative >>

Rainier School District #13

Location:
Rainier, OR
Grade Level:
K
1st
2nd
3rd
4th
5th
6th
7th
8th
9th
Technology Type:
PV System Size:
8.00 - kilowatts

Rainier School District’s photovoltaic (PV) system was installed in summer of 2017. A collaboration between the Rainier School District, Columbia River PUD, and Bonneville Power Administration, this 8-kilowatt PV installation demonstrates the practicality of photovoltaics while providing additional learning opportunities for vistors of the District. In addition to building a dedicated community of renewable energy educators, Solar 4R Schools has transformed the school's existing PV system into a... Read full project narrative >>

Zenger Farm

Location:
Portland, OR
Grade Level:
K
1st
2nd
3rd
4th
5th
6th
7th
8th
9th
Technology Type:
PV System Size:
7.60 - kilowatts

Through Portland General Electric’s Renewable Development Fund, Zenger Farm added solar energy education to its suite of hands-on environmental education programs in 2017. Over the course of one day, 8 volunteer and staff educators came together to increase their understanding of and comfort teaching about solar electricity and circuits and started the process of integrating solar heating and solar electric concepts into existing programs around plants, the sun, and seasons. Zenger Farm’s 7.6 kW photovoltaic (PV)... Read full project narrative >>

Solar Car Derby & Educator Workshops

Golden Girls Solar Car
Location:
Seattle, WA
Grade Level:
3rd
4th
5th
6th
7th
8th
9th
Technology Type:

With generous support from the Boeing Foundation, Solar 4R Schools piloted our first solar car engineering challenge event in 2014. The event leveraged contributions from the Seattle Mariners and Bonneville Power Administration while utilizing the iconic influence of professional sports to create a powerful impact on the 14 student teams that participated. As a precursor to the challenge event, Solar 4R Schools... Read full project narrative >>

Ophir Elementary School

Location:
Gallatin Gateway, MT
Grade Level:
K
1st
2nd
3rd
4th
5th
Technology Type:
PV System Size:
7.00 - kilowatts

The Big Sky School District #72 is a learning community nestled in Montana’s Gallatin Canyon on the banks of the Gallatin River. It is in this unique environment that we provide a comprehensive education for all learners within our community. We are deliberate about cultivating student’s experiences in an inclusive school environment while challenging them to strive for personal excellence and foster respect through compassion for others, our environment and the world.
Since 1906, Ophir Elementary and Middle school have been providing education to the children of the Gallatin Canyon.... Read full project narrative >>

Pages